The intensification of agricultural activities has led to a conversion of natural vegetation into fallow land and plantations in the Djapadji enclave. This study is therefore initiated to analyze the reactions of epiphytes to changes in land use, taking into account local microclimates. To achieve this objective, the diversity of epiphytes was characterized in the different biotopes of the Djapadji enclave. The floristic inventories made it possible to identify 16 species of vascular epiphytic plants in the study area. In the cocoa plantations, 12 epiphytic species were identified. Then, 11 epiphytic species were observed in the fallow land. Finally, 8 epiphytic species were collected in the rubber plantations. Of all the collections, the most diverse families are the Polypodiaceae represented by four epiphytic species: Microsorum punctatum, Phymatodes scolopendria, Platycerium angolense and Microgramma owariensis. The Orchidaceae are represented by Ancistrorhynchus capitatus and Solenangis Scandens. The Euphorbiaceae are also represented by two species: Alchornea cordifolia and Croton hirtus. Observations show that the crown area of the host trees influences the abundance of epiphytes. Trees whose branches cover a large horizontal surface have a greater tendency to shelter epiphytes. The Taï National Park, adjacent to the study site, also acts as a seed bank for the inventoried epiphytes. Given the ecological requirements of these epiphytes, it is appropriate to anticipate the degradation of their forest habitats in order to perpetuate them.
Published in | Journal of Plant Sciences (Volume 12, Issue 5) |
DOI | 10.11648/j.jps.20241205.15 |
Page(s) | 165-173 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Local Microclimates, Floristic Diversity, Epiphytes, Anthropogenic Pressure
[1] | Brummitt, N. A., et al., Green plants in the red: A baseline global assessment for the IUCN sampled Red List Index for plants. 2015. 10(8): p. e0135152. |
[2] | Kouao, M. L., et al., Crop losses and patterns of wildlife damage at the periphery of Dassioko Classified Forest and Forêt des Marais Tanoé-Ehy in Côte d’Ivoire. International Journal of Biosciences, 2023. 23(5): pp. 40-53. |
[3] | Dias-Pereira, J., et al., Vascular Epiphyte Diversity in a Key Atlantic Forest Remnant from Minas Gerais State, Southeastern Brazil. Floresta e ambiente, 2023. 30(1). |
[4] | Furtado, S. G. and L. Menini Neto, Vascular epiphytes in the cloud forests of the Serra da Mantiqueira, Southeastern Region of Brazil. Rodriguésia, 2022: p. 73. |
[5] | Zotz, G., et al., EpiList 1.0: a global checklist of vascular epiphytes. Ecology, 2021. 102(6): p. e03326. |
[6] | Richards, J. H., Assessing the strength of climate and land-use influences on montane epiphyte communities. Conservation Biology, 2021. 35(5): pp. 1496-1506. |
[7] | Chaves, C. J. N., et al., Deforestation is the turning point for the spreading of a weedy epiphyte: an IBM approach. Scientific Reports, 2021. 11(1): p. 20397. |
[8] | Kouamé, N. F. and I. A. Zoro Bi, Nouveau découpage de la zone de forêt dense humide de la Côte d'Ivoire. Sciences & Nature, 2010. 7(2): pp. 177-194. |
[9] | Adou Yao, C. Y., Pratiques paysannes et dynamique de la biodiversité dans la Forêt Classée de Monogaga (Côte d'Ivoire). 2005, Thèse de doctorat, Département Hommes Natures Sociétés, Muséum national d'histoire naturelle, Paris. p. 233. |
[10] | Nadkarni, N. M. and R. Solano, Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia, 2002. 131: pp. 580 - 586. |
[11] | Gnagbo, A., Phytogéographie et usages des épiphytes vasculaires en Côte d'Ivoire. 2019: Éditions universitaires européennes. 189 Pages. |
[12] | Gnagbo, A., D. Kouame, and C. Y. Adou Yao, Diversité des épiphytes vasculaires de la strate inférieure des formations végétales du Parc National d’Azagny (Sud de la Côte d’Ivoire). Journal of Animal &Plant Sciences, 2016. 28(1): pp. 4366-4386. |
[13] | Zapfack, L. and S. Engwald, Biodiversity and spatial distribution of vascular epiphytes in two biotopes of the Cameroonian semi-deciduous rain forest. Plant Ecology, 2008. 195(1): pp. 117-130. |
[14] | Zotz, G. and M. Y. Bader, Epiphytic plants in a changing world: Global change effects on vascular and non-vascular epiphytes. Functional Ecology of Plants, Institute of Biology and Environmental Sciences, University of Oldenburg (Germany), 2009: p. 27. |
[15] | Benzing, D. H., Vascular epiphytes. Forest canopies, 2004. 2: pp. 175-211. |
[16] | Nadkarni, N. M., M. C. Mewin, and J. Niedert, Forest canopies, plant diversity. Encyclopedia of Biodiversity, 2001. Volume 3: pp. 27 - 40. |
[17] | Raunkiaer, C., The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiær. Oxford: Clarendon Press, 1934: p. 632. |
[18] | Aké-Assi, L., Flore de Côte d'Ivoire 2, catalogue systématique, biogéographie et écologie. Conservatoire et Jardin Botaniques, Genève, Suisse, 2002: p. 401. |
[19] | UICN, Red list threatened Species. IUCN Conservation Monitoring Centre, Cambridge, UK. 2020. |
[20] | Shannon, C. E., A Mathematical Theory of Communication. The Bell System Technical Journal 1948. 27: pp. 379-423. |
[21] | Sorensen, T., A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analysis of the vegetation on Danish commons. Biol. Skr., 1948. 5: pp. 1-34. |
[22] | Pielou, E. C., The measurement of diversity in different types of biological collections. Journal of theoretical biology, 1966. 13: pp. 131-144. |
[23] | Ter braak, C., Correspondence analysis of incidence and abundance data: properties in terms of a unimodal response model. Biometrics, 1985. 41: pp. 859-873. |
[24] | Legendre, P., Spatial autocorrelation: problem or new paradigm. Ecology, 1993. 74: pp. 1659-1673. |
[25] | Legendre, P. and L. Legendre, Numerical Ecology. 1998: English 2nd edition. Elsevier Scientific Publishing Company, Amsterdam. 213 p. |
[26] | Tomassone, R., C. Dervin, and J. Masson, Modélisation de phénomènes biologiques. 1993: Masson, Paris 367 p. |
[27] | Pennington, T. D. and J. Sarukhán, Árboles tropicales de México: manual para la identificación de las principales especies. 2005: UNAM. |
[28] | Assiri, A. A., et al., Identification de caractéristiques agronomiques pour le diagnostic et la prise de décision de régénération des vergers de cacaoyers en Côte d’Ivoire. African Crop Science Journal, 2016. 24(3): pp. 223-234. |
[29] | Konan, G. D., et al., Typologie des systèmes agroforestiers à base de cacaoyers selon le gradient de production cacaoyère en Côte d’Ivoire. International Journal of Biological Chemical Sciences, 2023. 17(2): pp. 378-391. |
[30] | AKA, A. R., et al., Inventaire et distribution des espèces de végétaux parasites et épiphytes du cacaoyer en Côte d’Ivoire. Journal of Animal Plant Sciences, 2016. 31(2): p. 5010-5020. |
[31] | Siaz-Torres, S. S., et al., Contribution of peeling host for epiphyte abundance in two tropical dry forests in the “El Cielo Biosphere Reserve”, Mexico. Plant Species Biology, 2021. 36(2): pp. 269-283. |
[32] | Droissart, V., et al., Notes taxonomiques et chorologiques sur quelques Orchidaceae endémiques d'Afrique centrale atlantique. Adansonia, 2012. 34(1): pp. 23-35. |
[33] | Fu, Z., et al., Functional relationship between leaf/stem pseudobulb size and photosynthetic pathway in the Orchidaceae. Canadian Journal of Plant Science, 2022. 102(2): pp. 419-426. |
[34] | Gnagbo, A., Diversité, distribution et utilisations des épiphytes vasculaires des strates inférieures des forêts côtières de Côte d’Ivoire: Cas du Parc National d’Azagny. 2015, Université Félix HOUPHOUËT-BOIGNY (Côte d'Ivoire). p. 165. |
[35] | DaRocha, W., et al., Disentangling the factors that shape bromeliad and ant communities in the canopies of cocoa agroforestry and preserved Atlantic Forest. Biotropica, 2021. 53(6): pp. 1698-1709. |
APA Style
Gnagbo, A., Egnankou, W. M., Pagny, F. P. J., Tiebré, M. S., Yao, C. Y. A. (2024). Resilience of Vascular Epiphytes to the Effects of Anthropization in the Djapadji Enclave. Journal of Plant Sciences, 12(5), 165-173. https://doi.org/10.11648/j.jps.20241205.15
ACS Style
Gnagbo, A.; Egnankou, W. M.; Pagny, F. P. J.; Tiebré, M. S.; Yao, C. Y. A. Resilience of Vascular Epiphytes to the Effects of Anthropization in the Djapadji Enclave. J. Plant Sci. 2024, 12(5), 165-173. doi: 10.11648/j.jps.20241205.15
@article{10.11648/j.jps.20241205.15, author = {Anthelme Gnagbo and Wadja Mathieu Egnankou and Franck Placide Junior Pagny and Marie Solange Tiebré and Constant Yves Adou Yao}, title = {Resilience of Vascular Epiphytes to the Effects of Anthropization in the Djapadji Enclave }, journal = {Journal of Plant Sciences}, volume = {12}, number = {5}, pages = {165-173}, doi = {10.11648/j.jps.20241205.15}, url = {https://doi.org/10.11648/j.jps.20241205.15}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jps.20241205.15}, abstract = {The intensification of agricultural activities has led to a conversion of natural vegetation into fallow land and plantations in the Djapadji enclave. This study is therefore initiated to analyze the reactions of epiphytes to changes in land use, taking into account local microclimates. To achieve this objective, the diversity of epiphytes was characterized in the different biotopes of the Djapadji enclave. The floristic inventories made it possible to identify 16 species of vascular epiphytic plants in the study area. In the cocoa plantations, 12 epiphytic species were identified. Then, 11 epiphytic species were observed in the fallow land. Finally, 8 epiphytic species were collected in the rubber plantations. Of all the collections, the most diverse families are the Polypodiaceae represented by four epiphytic species: Microsorum punctatum, Phymatodes scolopendria, Platycerium angolense and Microgramma owariensis. The Orchidaceae are represented by Ancistrorhynchus capitatus and Solenangis Scandens. The Euphorbiaceae are also represented by two species: Alchornea cordifolia and Croton hirtus. Observations show that the crown area of the host trees influences the abundance of epiphytes. Trees whose branches cover a large horizontal surface have a greater tendency to shelter epiphytes. The Taï National Park, adjacent to the study site, also acts as a seed bank for the inventoried epiphytes. Given the ecological requirements of these epiphytes, it is appropriate to anticipate the degradation of their forest habitats in order to perpetuate them. }, year = {2024} }
TY - JOUR T1 - Resilience of Vascular Epiphytes to the Effects of Anthropization in the Djapadji Enclave AU - Anthelme Gnagbo AU - Wadja Mathieu Egnankou AU - Franck Placide Junior Pagny AU - Marie Solange Tiebré AU - Constant Yves Adou Yao Y1 - 2024/10/31 PY - 2024 N1 - https://doi.org/10.11648/j.jps.20241205.15 DO - 10.11648/j.jps.20241205.15 T2 - Journal of Plant Sciences JF - Journal of Plant Sciences JO - Journal of Plant Sciences SP - 165 EP - 173 PB - Science Publishing Group SN - 2331-0731 UR - https://doi.org/10.11648/j.jps.20241205.15 AB - The intensification of agricultural activities has led to a conversion of natural vegetation into fallow land and plantations in the Djapadji enclave. This study is therefore initiated to analyze the reactions of epiphytes to changes in land use, taking into account local microclimates. To achieve this objective, the diversity of epiphytes was characterized in the different biotopes of the Djapadji enclave. The floristic inventories made it possible to identify 16 species of vascular epiphytic plants in the study area. In the cocoa plantations, 12 epiphytic species were identified. Then, 11 epiphytic species were observed in the fallow land. Finally, 8 epiphytic species were collected in the rubber plantations. Of all the collections, the most diverse families are the Polypodiaceae represented by four epiphytic species: Microsorum punctatum, Phymatodes scolopendria, Platycerium angolense and Microgramma owariensis. The Orchidaceae are represented by Ancistrorhynchus capitatus and Solenangis Scandens. The Euphorbiaceae are also represented by two species: Alchornea cordifolia and Croton hirtus. Observations show that the crown area of the host trees influences the abundance of epiphytes. Trees whose branches cover a large horizontal surface have a greater tendency to shelter epiphytes. The Taï National Park, adjacent to the study site, also acts as a seed bank for the inventoried epiphytes. Given the ecological requirements of these epiphytes, it is appropriate to anticipate the degradation of their forest habitats in order to perpetuate them. VL - 12 IS - 5 ER -